
Distraction Generation using Google T5: A Study

Fernando Gonzalez Adauto
ETH Zürich

fgonzalez@student.ethz.ch

Kevin Golan
ETH Zürich

kgolan@student.ethz.ch

Abstract

Distraction Generation (DG) is the remain-
ing task in Automated Quiz Generation that
is yet to be mastered by the state-of-the-art
in NLP. Given a reference text and question,
an ideal DG model produces a set of distrac-
tors that are contextually coherent but factually
wrong. The literature presents a plethora of ap-
proaches that address this problem. But none,
so far, provide a robust framework that consis-
tently produces distractors of quality. Our con-
tribution to this field is twofold: (1) We are the
first to apply Google’s T5 model specifically
to this problem. (2) We modify T5’s loss func-
tion by introducing a cosine similarity term
to generate factually wrong distractors. Run-
ning T5-small and T5-base, we obtain results
that fall short of established baselines but are
nonetheless encouraging. Additionally, our re-
sults suggest that the modified loss function
improves performance.

1 Introduction

The multiple-choice question (MCQ) test is a long-
established assessment format dating back to the
early 20th century. At first, it was used as a tool to
assess a teacher’s knowledge on a topic, whose per-
formance would determine his or her salary (U. of
Texas, 2001). Since then, MCQ’s, as a form of
assessment, have become ubiquitous in almost all
levels of education.

A typical MCQ test will likely follow one of two
formats. The first type consists of directly assessing
the candidate’s knowledge on a topic by posing sev-
eral questions relating to that subject, each accom-
panied with multiple candidate answers. Among
the proposed candidates, typically, only one is cor-
rect. The second MCQ test format, which will be
of the type considered in this paper, consists of
providing the candidate with a reference context –
be it a chapter, a paragraph, a table – upon which

multiple-choice questions are formulated. Once
again, in almost all instances, only one of the pro-
posed candidates is the correct one.

As learning is increasingly shifting online and
the proliferation of online academic resources is far
from slowing down, new avenues to measure feed-
back of one’s digestion of information are being
sought. This trend can be credited for the emer-
gence of alternative learning formats such as Mas-
sive Open Online Courses (MOOCs), tutorial blogs,
coding platforms, and more. In this paper, we aim
to contribute to the field of MCQ Quiz Genera-
tion by focusing on the problem of Distraction-
Generation (DG).

Distraction Generation deals with the task of
generating candidate choices that are incorrect but
plausible, given a question and context. Although
sophisticated methods to produce question-answer
pairs from a given text already exist, using, for
example, BERT or custom-made Transformer ar-
chitectures - distraction generation remains an un-
derdeveloped area of research.

Common challenges found in Distraction Gen-
eration include, but are not limited to: distractors
that completely ignore a question’s context; distrac-
tors that make little grammatical sense; distractors
that express the answer in alternative ways (hence
are not incorrect), and distractors that can be disre-
garded through simple reasoning. Although several
interesting approaches have been proposed to miti-
gate some of these issues (discussed in the ensuing
Literature Review section), we are yet to come
across a robust, generalized blueprint for DG that
addresses most if not all of them.

With the propositions and results put forward by
this paper, we hope to provide a robust framework
that produces distractors of quality and addresses
the aforementioned challenges in DG. We intend
to tackle those using Google’s T5 architecture and
by implementing our custom loss function. By



undertaking such research, we hope to contribute
to the ambitious goal of making high-quality quiz
generation a possibility at scale.

2 Related Work

To the best of our knowledge, research in DG has
seen two streams so far: short-form DG and long-
form DG.

Short-form DG typically appears in close-style
MCQ generation, which produces questions whose
answers are single words as found in Figure 1.
Although this method can yield effective distrac-
tors (using relatedness between words or external
knowledge banks, for example), it ultimately re-
stricts the type of questions that could be produced,
thus restricting the depth of knowledge assessed.
Due to the shortcomings of short-form DG, we turn
instead to long-form DG, which will be the centre
of our work and of which an instance can be found
in Figure 2. Here, MCQ’s are generated by pairing
questions with options of variable length. Relevant
findings in both approaches are discussed in the
ensuing paragraphs.

2.1 Short-Form Distraction Generation

Multiple approaches have been proposed to solve
the task of short-form DG. Among others, apply-
ing variations on the grammar and vocabulary of
the ground truth (Hoshino and Nakagawa, 2007);
using orthographically, morphologically, or pho-
netically similar words (Pino and Eskénazi, 2009);
selecting distractors based semantic similarity us-
ing Word2Vec (Jiang and Lee, 2017), and using ex-
ternal knowledge banks to propose tokens that are
thematically related to the ground truth (Ren and
Zhu, 2020). Despite the merit of these approaches,
none of these approaches tests a candidate’s read-
ing comprehension ability but instead focus more
on grammatical or factual knowledge.

Figure 1: Example of a question containing short-form
distractors.

Figure 2: Example of a question containing long-form
distractors. Selected from RACE and slightly modified
for clarity purposes.

2.2 Long-Form Distraction Generation

When surveying the research in long-form DG, we
found that – at a higher level at least – most groups
incorporated some form of Transformer architec-
ture in dealing with DG, and a minority used Bi-
LSTM or RNN-based architectures. Within the
group that employs Transformer architectures, we
noticed a split in the practice of long-form DG, best
explained by two streams. The first stream, which
encompasses most of long-form DG research, pro-
ceeds in the task by fine-tuning derived versions
of the model proposed by Vaswani et al. (2017)
such as BERT, T5, and PEGASUS (Zhang et al.,
2020; Devlin et al., 2019; Raffel et al., 2020a). The
second stream, which you find less often, encom-
passes methods that opted to use a custom-made
architecture for this task but still uses a variant of
the Transformer architecture.

2.3 Custom Transformer Architectures

Attention mechanisms have been a keystone in Nat-
ural Language Processing (NLP). Many works use
this mechanism as the principal component of their
architecture to build specifically designed models
to solve DG. One of the first works in DG proposed
a hierarchical encoder-decoder framework (HSA)
with static and dynamic attention mechanisms to
address both word and sentence importance (Gao
et al., 2018). Then Zhou et al. (2019) propose a Co-
attention Hierarchical Network in which they use
article-to-question and question-to-article attention
layers to allow the encoder to capture interactions
between article and question. Maurya and Desarkar
(2020) use HMD-Net, which consists of one en-
coder and three decoders with a dissimilarity loss.
Finally, Qiu et al. (2020) propose EDGE, in which
they introduce two modules that use attention to



reform the passage and the question. They generate
multiple distractors using beam search and control
the distance among them.

2.4 Variations of Encoder-Decoder
Architectures

When looking at the literature that uses deriva-
tions of the transformer suggested by Vaswani et al.
(2017), we found long-form DG strategies involv-
ing BERT and its descendants; Google’s T5 and
PEGASUS; and combinations of GPT2 and BERT.

Offerijns et al. (2020) propose an interesting
strategy in which they split the task of distraction
generation into two parts: distraction generation
and then distractor filtering. They generate dis-
tractors using GPT2 (Radford et al., 2019) and
thereafter filter them using DistilBERT(Sanh et al.,
2020). By applying this filtering mechanism, they
approach the problem of distractor quality, i.e. as-
sessing if the distractor fits the question’s context
and whether it can be considered a grammatically
sound answer. Additionally, they apply a repetition
penalty that “punishes” their model for generating
similar texts, enforcing the generation of syntacti-
cally dissimilar distractors.

Finally, Lelkes et al. (2021) tackle Distraction
Generation using T5 and PEGASUS models. Us-
ing a pre-trained model, they generate distractors
by taking the output when prompted to answer a
question. Using this for direct question-answering,
they observed that they could obtain an arbitrary
amount of sample answers if they fed an arbitrary
number of questions. After obtaining experimen-
tal results, they conclude with a case study that
found that for a significant majority of questions, at
least one distractor generated by T5 was considered
plausible to a human reader.

3 Background

3.1 Task definition

The goal of the DG task can be formulated as fol-
lows: given a text passage P, a question Q gen-
erated from the passage and an answer A to that
question, generate the best wrong option D. For-
mally, we aim to find the best distractor D that
maximizes the conditional log-likelihood given P,
Q, and A:

D̃ = argmax
D

logP (D | P,Q,A) (1)

T5 Configurations Breakdown

Model Version Parameter Count (millions)

T5 Small 60
T5 Base 220

T5 Large 770
T5-3B 3000

T5-11B 11000

Table 1: Google T5 configurations and associated pa-
rameter count.

3.2 T5 Model Overview

We use Google’s T5 model to generate distractors
from an input text sequence and question, each
represented as tokens. As previously discussed in
our Related Work section, T5 is a slightly modified
variant of the architecture proposed by Vaswani
et al. (2017). Additionally, the T5 repository of-
fers multiple model configurations (or versions)
of its model with varying numbers of pre-trained
parameters, details of which are in Table 1.

Google T5’s structure relies on two main com-
ponents: an encoder and a decoder. As described
in Raffel et al. (2020a), the workflow in T5 runs
as follows: a tokenized text sequence is inputted
into the architecture and then converted to an em-
bedding representation. This embedding represen-
tation then passes into the architecture’s encoder
that then transfers its output to the decoder. Finally,
the decoder transfers its output sequence to a fully
connected layer that produces a softmax output.
Figure 31, hereunder, is a flowchart describing how
we apply T5 to our work.

3.2.1 Encoder
The encoder is organized as a stack of modules
(12 to be precise), each composed of two compo-
nents: a self-attention layer and a fully connected
layer. Once an output representation exits a mod-
ule, it is combined with a residual skip connection
that adds the module’s input to its output. After
passing through the encoder’s blocks, the resulting
sequence is forwarded into the decoder.

3.2.2 Decoder
The decoder operates in a similar fashion, contain-
ing 12 modules as well, but with an important archi-
tectural tweak: an additional attention mechanism
is introduced between the self-attention layer and
the fully-connected layer.



The function of the attention mechanism in T5’s
decoder distinguishes itself in two ways. First, it
operates in a auto-regressive manner, meaning that
it only attends to past outputs. And second, each
attention mechanism is split into different ”heads”,
whose outputs are then concatenated before further
processing.

3.2.3 Loss Function & Optimization
T5 was conceived for text-to-text tasks. Its train-
ing is grounded on teacher forcing, i.e. using the
ground-truth from prior steps as inputs to present or
future iterations. To that end, T5 runs the standard
maximum likelihood and the cross-entropy loss to
train its network’s weights (Raffel et al., 2020a).

The maximum likelihood’s definition and adap-
tation to our problem is found in (1). The cross-
entropy loss is defined hereunder (Raffel et al.,
2020b): given a prediction x and a class C belong-
ing to some vocabulary set V, the cross-entropy
loss is defined as:

L(x,C) = − ln

(
exp(x[C])∑
j exp(x[j])

)
∀j ∈ V (2)

L(x,C) = −x[C] + ln

∑
j

exp(x[j])

 (3)

During each training epoch, the cross-entropy
loss is averaged over its minibatch size. Then,
weights are updated using the AdaFactor optimizer
(Shazeer and Stern, 2018).

4 Method

4.1 Model Prefix Definition
Our approach similar to Lelkes et al. (2021) con-
sists of fine-tuning T5. However, in our work, we
fine-tune T5 with a new prefix “distraction” and
concatenate to the input: the passage, the question,
and the answer in the following format: “dist Q:
question; A: answer; P: passage”. Each one of the
distractors of each question is used as a target se-
quence, thus generating three input-output pairs per
question. Then, we use the pre-trained tokenizer
corresponding to the T5 pre-trained model to get
the numerical input representations.

4.2 T5 Version Choice & Resource
Constraints

As a baseline, we ran T5-small and T5-base with
the new ”distraction” prefix. Because of resource

limitations, we were unable to run T5-base in the
Leonhard cluster. We thus decided to run it once
using Google Colab, and then performed the rest
of the experiments using T5-small.

4.3 Modifications to the Loss Function
One of the main problems found in past approaches
in DG is high similarity between the generated dis-
tractors and the answer. To address that, we per-
formed experiments using a two-term loss function.
The first component is the standard cross-entropy
loss. The second term is a cosine similarity loss
that penalizes the distractors’ (D) similarity with
the correct answer (A).

cos(A,D) =
A ·D
‖A‖ · ‖D‖

(4)

4.3.1 Computing the Loss Function
To compute the first term, we first take the output
logits from T5’s decoder and obtain the predicted
text sequence by applying the softmax function.
We then pass that output through the encoder and
use the final hidden state as the distractor repre-
sentation. Similarly, we forward the ground truth
(the answer) through the encoder and take the last
hidden state as its representation. With those two
representations, we then compute the cosine simi-
larity and multiply the result by some weight λ to
then add it to the cross-entropy loss using a con-
vex combination of the two terms. The diagram in
Figure 3 shows how we compute the loss function.
The parameter λ is a tunable hyper-parameter for
our model. Hence, our optimization loss function
presents itself as follows.

L = (1− λ)L(x,D) + λ cos(A,D) (5)

5 Evaluation

5.1 Datasets
We are using the reading comprehension dataset
RACE (Lai et al., 2017). Each question is paired
with a single paragraph passage, the correct an-
swer, and three distractors. The dataset was col-
lected from English examinations in China, which
were designed for middle school and high school
students. The dataset is already split in training,
validation and test set. Moreover, we use the pre-
processed dataset proposed by Gao et al. (2018).
There, they remove a large quantity of fill-in-the-
blank questions and distractors that have no seman-
tic relevance with the article (the statistics of the



Figure 3: An overview of the model and the process to compute the new loss function. The blocks required to
compute the extra term in the loss function are represented with dotted lines

BLEU 1 BLEU 2 BLEU 3 BLEU 4
T5-small 24.34 8.03 4.50 3.44

T5-small + new loss 25.36 9.09 5.18 3.86
T5-base 29.14 11.71 6.97 5.06

HSA 27.32 14.69 9.29 6.47
Co-Att 28.65 15.15 9.77 7.01

HMD-Net 30.99 17.30 11.09 7.52
EDGE 33.03 18.12 11.35 7.57

BDG 39.81 24.81 17.66 13.56

Table 2: Performance comparison results for 1st distractor our models vs HSA (Gao et al., 2018), Co-Att(Zhou
et al., 2019), HMD-Net (Maurya and Desarkar, 2020), EDGE (Qiu et al., 2020), BDG (Chung et al., 2020)

Validation Train Test
# Questions 5681 41505 5779

# Distractors 16132 129226 16266

Table 3: Processed dataset statistics

dataset are shown in Table 3). It is important to
note, however, that after pre-preprocessing, the re-
sulting dataset’s size is significantly smaller than
the original (around half the number of distractors
are removed). Nonetheless, having experimented
with both, we find that training (given the limited
number of resources at hand), on the preprocessed
dataset results in better performance.

5.2 Results

5.2.1 T5 Performance Overall

We evaluated our models (T5-small and T5-base
with new prefix and, T5 new loss) using BLEU
(1 to 4) to compare each one of our 3 predicted
distractors with the 3 ground truth distractors. The

Figure 4: BLEU 4 score for different values of λ

distractors are generated via beam search using
the utilities provided in the Huggingface frame-
work (Wolf et al., 2020). In table 4 and 5 we show
the evaluation of our 2 best models and in table
2 the comparison with previous approaches. We
ran one iteration of T5-base because of resource
constraints and this model achieved the best per-



T5 Small (New Loss)

BLEU 1 BLEU 2 BLEU 3 BLEU 4

Distractor 1 25.36 9.09 5.18 3.86
Distractor 2 24.69 8.28 4.66 3.44
Distractor 3 19.52 6.34 3.34 2.57

Table 4: Average BLEU Score for 3 distractors pro-
duced by T5 Small with modified loss function.

formance among our models. Otherwise, our re-
sults fell short of previous approaches that we’ve
established as baselines. Nonetheless, our results
suggest that with more resources available, our per-
formance could be further improved using larger
batch sizes, more epochs and larger models like
T5-large, T5-3b or T5-11b.

5.2.2 Modification to the Loss
In evaluating T5 with the modified loss function,
we trained the model with different values of the
parameter λ. We evaluated the performance of our
model using the validation set whose results, for
different lambda, are found in Figure 4. We observe
that the BLEU-4 score improves with increasing
values of λ, and that it edges T5-small’s perfor-
mance when using just the cross entropy loss func-
tion. This suggests that the inclusion of this penalty
term improves the performance of our model.

In Table 6 and Figure 8 we show the complete
performance table with scores for the 3 distractors
and for different values of λ. We chose BLEU-4
as the main metric because it reflects better the
similarity between 2 long texts since it takes into
account groups of 4 words. We selected the model
with λ =0.4 as the best one because it shows better
performance for the 1st distractor in BLEU 2,3 and
4. In Figure 8 we observe that the score for the
2nd and 3rd distractors doesn’t improve for larger
values of λ as it does with the 1st distractor. One of
the reasons why the cosine term is not very helpful
for 2nd and 3rd distractors could be the fact that
the model is trained to generate the best distractor
and this training process doesn’t take into account
the way in which beam search works to generate 3
distractors.

5.2.3 Effect of Cosine Term
The goal of the cosine similarity term is to avoid
distractors similar to the correct answer. As a qual-
itative comparison we looked for examples in the
predictions of T5-small where the similarity of

T5 Base

BLEU 1 BLEU 2 BLEU 3 BLEU 4

Distractor 1 29.14 11.71 6.97 5.06
Distractor 2 30.18 11.28 6.37 4.66
Distractor 3 26.70 9.47 5.20 3.82

Table 5: Average BLEU Score for 3 distractors pro-
duced by T5 Base with original loss function.

the answer and the prediction is high according
to BLEU scores (BLEU 3 greater or equal to 10).
Then check how the predictions look like in the
model with modified loss function. We found some
cases where the model with modified loss func-
tion successfully avoid a prediction similar to the
correct answer as shown in Figure 5.

6 Discussion

6.1 Dataset Issues

Although we opted to use the preprocessed dataset
for our work, we firmly believe that with more re-
sources (and hence, a larger version of T5 and more
epochs), using the original RACE dataset will re-
turn better results. Not only did the preprocessed
dataset contain half the amount of distractors from
the original set, but it also contained inconsisten-
cies in the way distractors were formatted. The
testing set contained a single ground-truth distrac-
tor per question, whereas the validation set had
three ground truth distractors per question. This
formatting difference complicated model evalua-
tion across datasets, which is why we evaluated all
of our models on the validation set.

6.2 Memory Limits

One of the biggest obstacles we found in the project
is lack of resources at hand. Even though the GPU’s
RAM had enough capacity to run T5-small and per-
form our experiments with some limitations, we
were at a disadvantage compared to our established
baselines that ran models of higher complexity than
ours. We believe that larger versions of T5 by them-
selves could get a better performance than other
models if we train them with larger batch sizes
and tune its hyperparameters. The performance of
those larger models could be further improved by
adding the cosine term to the loss function.



6.3 Alternative Approach to Distractor
Evaluation

The modifications that we performed to the loss
function aimed to improve the quality of the dis-
tractors by addressing some problems of other ap-
proaches, like the similarity of the distractors to
the correct answer that would make the solution
ambiguous. However, those problems are not fully
captured by the evaluation metric (BLEU) because
it only measures how similar the predicted distrac-
tor is to the set of ground truth distractors.

6.3.1 Flaw in BLEU metric for Distractor
Evaluation

In order to truly measure the contribution of our
work in producing effective distractors, we believe
that a novel evaluation metric should be conceived
that accounts for other features that define the qual-
ity of a distractor. In Figures 6 and 7 of the Ap-
pendix, we present two examples of what we con-
sider good distractors that have low BLEU-4 scores.
Evidently, the generated distractor is different to
the ground truth. However, these instances do show
that a generated distractor with low overlap can
nonetheless be ”clever” and make grammatical and
contextual sense. Hence, it is not far-fetched to
suggest that BLEU scores could be a misleading
metric in evaluating distractors.

6.3.2 Towards Human Evaluation
In future investigations in DG, we suggest running
a pipeline that includes BLEU scores as an eval-
uation metric. But we also strongly recommend
performing a human evaluation survey to obtain
another perspective on the quality of distractors
generated. To this date, unfortunately, we are yet to
find an agreed-upon framework that describes how
such a survey should be conducted. Nonetheless, a
few approaches suggested by the literature provide
interesting ways to go about this. Namely, Lelkes
et al. (2021), Gao et al. (2018) and Offerijns et al.
(2020).

7 Conclusions

In this work, we introduced a novel approach for
distraction generation using T5 with a new prefix
and a modified loss function. Our experiments
revealed that the additional cosine similarity term
in the loss function helps improve performance.
Next, we think that using a larger version of T5
will likely increase the quality of the distractors and
the BLEU metric performance. Finally, we discuss

the limitations of the BLEU metric as an assessor
of distractors and briefly consider the merits of
conducting a human-led survey to assess the quality
of distractors.



References
Ho-Lam Chung, Ying-Hong Chan, and Yao-Chung Fan.

2020. A bert-based distractor generation scheme
with multi-tasking and negative answer training
strategies.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Yifan Gao, Lidong Bing, Piji Li, Irwin King, and
Michael R. Lyu. 2018. Generating distractors for
reading comprehension questions from real exami-
nations.

Ayako Hoshino and H. Nakagawa. 2007. Assisting
cloze test making with a web application.

Shu Jiang and John Lee. 2017. Distractor generation
for Chinese fill-in-the-blank items. In Proceedings
of the 12th Workshop on Innovative Use of NLP for
Building Educational Applications, pages 143–148,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
785–794, Copenhagen, Denmark. Association for
Computational Linguistics.

Ádám D. Lelkes, Vinh Q. Tran, and Cong Yu. 2021.
Quiz-style question generation for news stories.
CoRR, abs/2102.09094.

Kaushal Kumar Maurya and Maunendra Sankar De-
sarkar. 2020. Learning to distract: A hierarchi-
cal multi-decoder network for automated genera-
tion of long distractors for multiple-choice questions
for reading comprehension. In Proceedings of the
29th ACM International Conference on Information
amp; Knowledge Management, CIKM ’20, page
1115–1124, New York, NY, USA. Association for
Computing Machinery.

Jeroen Offerijns, Suzan Verberne, and Tessa Verhoef.
2020. Better distractions: Transformer-based dis-
tractor generation and multiple choice question fil-
tering. CoRR, abs/2010.09598.

J. Pino and M. Eskénazi. 2009. Semi-automatic gener-
ation of cloze question distractors effect of students’
l1. In SLaTE.

Zhaopeng Qiu, Xian Wu, and Wei Fan. 2020. Auto-
matic distractor generation for multiple choice ques-
tions in standard tests.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020a. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020b. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Siyu Ren and Kenny Q. Zhu. 2020. Knowledge-driven
distractor generation for cloze-style multiple choice
questions.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.

Ex-Students' Association U. of Texas. 2001. Publica-
tions manual.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.

Xiaorui Zhou, Senlin Luo, and Yunfang Wu. 2019. Co-
attention hierarchical network: Generating coherent
long distractors for reading comprehension.

http://arxiv.org/abs/2010.05384
http://arxiv.org/abs/2010.05384
http://arxiv.org/abs/2010.05384
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1809.02768
http://arxiv.org/abs/1809.02768
http://arxiv.org/abs/1809.02768
https://doi.org/10.18653/v1/W17-5015
https://doi.org/10.18653/v1/W17-5015
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
http://arxiv.org/abs/2102.09094
https://doi.org/10.1145/3340531.3411997
https://doi.org/10.1145/3340531.3411997
https://doi.org/10.1145/3340531.3411997
https://doi.org/10.1145/3340531.3411997
http://arxiv.org/abs/2010.09598
http://arxiv.org/abs/2010.09598
http://arxiv.org/abs/2010.09598
http://arxiv.org/abs/2011.13100
http://arxiv.org/abs/2011.13100
http://arxiv.org/abs/2011.13100
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2004.09853
http://arxiv.org/abs/2004.09853
http://arxiv.org/abs/2004.09853
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1804.04235
http://arxiv.org/abs/1804.04235
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1911.08648
http://arxiv.org/abs/1911.08648
http://arxiv.org/abs/1911.08648


A Appendix

Figure 5: Example distractor similar to the correct an-
swer produced by T5-small. The distractor ”a kibbutz”
can be considered as a correct answer.

1st distractor 2nd distractor 3rd distractor

Lambda BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

0 24.34 8.03 4.50 3.45 21.36 7.66 4.40 3.17 20.47 6.73 3.67 2.84
0.1 23.03 8.29 4.82 3.45 25.13 8.62 4.75 3.51 21.24 7.09 3.81 2.84
0.2 23.73 8.38 4.77 3.41 24.29 8.07 4.48 3.33 20.10 6.54 3.53 2.61
0.3 25.45 9.06 5.13 3.73 24.86 8.13 4.37 3.23 18.41 5.75 3.04 2.24
0.4 25.36 9.09 5.19 3.86 24.69 8.28 4.66 3.44 19.52 6.34 3.35 2.58

Table 6: Scores for 3 distractors by lambda



Figure 6: Example 1 of good quality distractor with low BLEU-4 score



Figure 7: Example 2 of good quality distractor with low BLEU-4 score



Figure 8: Performance of 3 distractors different values of lambda


